
Evolution profiles and functional equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 485208

(http://iopscience.iop.org/1751-8121/42/48/485208)

Download details:

IP Address: 171.66.16.156

The article was downloaded on 03/06/2010 at 08:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/48
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 485208 (16pp) doi:10.1088/1751-8113/42/48/485208

Evolution profiles and functional equations

Thomas Curtright1 and Cosmas Zachos2

1 Department of Physics, University of Miami, Coral Gables, FL 33124-8046, USA
2 High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815, USA

Received 15 September 2009
Published 17 November 2009
Online at stacks.iop.org/JPhysA/42/485208

Abstract
Time evolution is formulated and discussed in the framework of Schröder’s
functional equation. The proposed method yields smooth, continuous dynamics
without the prior need for local propagation equations.

PACS numbers: 05.45.−a, 05.10.cc, 02.90.+p, 02.30.Sa, 02.30.Zz

1. Introduction

From a lattice of time points, as is usually discussed in dynamical systems, is it possible
to obtain continuous, or even smooth, time evolution without ambiguity? Under certain
circumstances, the answer is yes, through a holographic interpolation process involving
functional methods.

In this paper, we utilize and illustrate Schröder’s functional techniques [1] to produce
continuous trajectories out of discrete nonlocal recursion laws (orbits) for less self-evident
dynamical systems, with fixed points at x = 0. In particular, we build exact continuous
iterations of 2x(1 + x), and approximations to continuous iterations of x exp x, and their
inverses, and we discuss the notable features of the resulting evolution. Typically, smooth,
analytic interpolates of the discrete recursion rules that act as the boundary data for the process
(hence our use of the term holographic) are obtained. These methods are of possible use to
anyone pursuing practical applications of functional equations [2], and are also likely to be
relevant to more recent theoretical developments [3].

2. The method

Consider an evolution trajectory x(t) of a 1-dim system, e.g. specified by a local, time-
translation-invariant law (cf energy conservation).

dx(t)/dt = v(x(t)). (1)

One may integrate this to obtain the trajectory as a family of functions of the initial data,
indexed by the time,

x(t) = ft (x(0)). (2)
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For any given time, we may scale t to consider a unit time increment �t = 1, so that

x(1) = f1(x(0)). (3)

But then, for time-translation-invariant systems, further evolution obeys

x(t + 1) = ft+1(x(0)) = f1(x(t)), (4)

i.e. x(t + 1) is the same function of x(t) as x(1) is of x(0). For notational convenience in the
following, we will often use x(0) ≡ x.

Now suppose, for reasons dictated by physics applications, that the time-local evolution
law (1) is not specified, but an explicit, nonlocal, discrete propagation function f 1 is
available, as in (3). We pose the question: How does one obtain the complete, continuous
trajectory x(t) = ft (x) without benefit of the local relation?

Of course in principle, it is straightforward to compute iterates of (3) on an integral lattice
of time points, t = · · · ,−2,−1, 0, 1, 2, 3, . . ., to obtain ‘the splinter of x’ (for example, see
[4]), i.e.

x(2) = f1(f1(x)) = f2(x),

x(n) = f1(f1 · · · (f1(x))) = fn(x), (5)

x(−1) = f −1
1 (x) = f−1(x),

etc, assuming the domains for the various functions overlap properly. Thus, x = f−1(f1(x)) =
f1(f−1(x)), or more generally, x(k + n) = fk(fn(x)) = fn(fk(x)), associative and
commutative composition. From this lattice, upon selecting derivatives at the lattice points, an
infinity of interpolating functions could be produced, say graphically, to obtain a continuous
trajectory. This approach permits easy visualization of the trajectories, but is ambiguous,
and does not place proper emphasis on analytic properties of the solutions, so it will not be
pursued.

Instead, given f1(x) we will use here the theory pioneered by Ernst Schröder [1] to
construct an analytic ft (x) around a fixed point of f1(x). Without loss of generality, we take
the fixed point to be x = 0.

Schröder’s construction of ft (x) amounts to building all iterates of f1(x), including
fractional, negative and infinitesimal t, based on his eponymous functional conjugacy equation
involving the auxiliary function �,3

s�(x) = �(f1(x)), (6)

for some constant s �= 1. With the origin a fixed point of f 1, i.e. f1(0) = 0, it follows
that �(0) = 0, and if � ′(0) �= 0, then s = f ′

1(0). The inverse function satisfies Poincaré’s
equation,

�−1(sx) = f1(�
−1(x)). (7)

Upon iteration of the functional equation, � acts upon the splinter of x to give

sn�(x) = �(fn(x)) = �(f1(f1 · · · (f1(x)))). (8)

Now, the point to be stressed is that this formula naturally yields a continuous interpolation
for all non-integer n,

st�(x) = �(ft (x)). (9)

So, to produce the full, continuous trajectory, we solve for Schröder’s auxiliary function �(x),
and construct the inverse function �−1. Having done so, this yields x(t) as a functional
similarity transform of the st multiplicative map. From (9),

x(t) ≡ ft (x) = �−1(st�(x)). (10)

3 Schröder’s wave function if you will (pun intended).
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In a suitable domain, this gives the general iterate for any t, analytic around the fixed point
x = 0.

Moreover, this solution manifestly satisfies the requisite associative and Abelian
composition properties for all iterates and inverse iterates. That is to say, ft1+t2(x) =
ft1(ft2(x)), hence x(t1 + t2) = ft1(x(t2)), as required for time-translationally invariant systems.
Some specific cases are as follows.

f2(x) = �−1(s2�(x)) = �−1(s�(f1(x))) = f1(f1(x)),

f1(x) = �−1(s1�(x)) = �−1(s1/2�(�−1(s1/2�(x)))) = f1/2(f1/2(x)), (11)

f0(x) ≡ x = �−1(s−1�(�−1(s1�(x)))) = f−1(f1(x)),

etc. However, it is crucial to note that in the limit s → 1, all iterates and inverse iterates
lose their distinction and degenerate to the identity map, f0(x) = x, and the method fails as
written. For this reason, if f ′

1(0) = 1, one augments f1(x) in Schröder’s equation to sf1(x),
and takes the s → 1 limit only at the very end of the calculations, if it makes sense to do so.

3. Schröder’s example

For a very elementary illustration of the technique, consider Schröder’s early example of a
recursive evolution law,

f1(x) = 2x(1 + x), (12)

so f1(0) = 0, and s = f ′
1(0) = 2. Schröder’s equation (6) is then solved by

�(x) = 1
2 ln(1 + 2x), �−1(x) = 1

2 (e2x − 1). (13)

This results in

x(t) ≡ ft (x) = 1
2 ((1 + 2x)2t − 1), (14)

which indeed obeys ft1(ft2(x)) = ft1+t2(x). In particular, f1(x) = 1
2 ((1 + 2x)2 − 1) =

f1/2(f1/2(x)), f1/2(x) = 1
2 ((1 + 2x)

√
2 − 1), f −1

1 (x) = f−1(x) = 1
2 (

√
1 + 2x − 1), etc.

We may visually appreciate the evolution described by (14) through a surface plot, where
the left–right axis is the initial position, x, the depth axis is the time, t, and the vertical axis
is x(t). The surface flows from the identity map at t = 0 to the given discrete propagation
function x �−→ f1(x) at t = 1. The origin is invariant since it is a fixed point of all the
functions ft (x), for every value of the t index, as is the point x = −1/2 in this simple
example. Also note, here we require the initial x � −1/2 to have real x(t) for all t. The
full sweep of the surface describes not just one trajectory, starting at a single value of x and
moving into the page with t, but rather it encodes the evolution of all trajectories from the
initial domain x � −1/2. The construction is holographic in the sense that the interior of the
surface is completely determined by the behavior on the time boundaries, namely the identity
map at the front edge and f1(x) = 2x(1 + x) at the back edge. An animation of sequential,
fixed time, vertical slices through the surface would perhaps show more clearly how the initial
straight line of data evolves to the final f 1.4

The velocity profile following from (14) is

v(x(t)) = ∂ft (x)

∂t
= (1 + 2x(t)) ln(1 + 2x(t)) ln

√
2. (15)

4 A video sequence of the time-sliced surface is available. See http://server.physics.miami.edu/˜curtright/
Schroeder.html
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Figure 1. x(t) plotted versus t and initial x for Schröder’s example.
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Figure 2. Velocity profile for Schröder’s example.

Had this velocity been available ab initio, it could have been integrated in the usual way,
i.e. t = ∫ x(t)

x
ds

v(s)
, to obtain the trajectory (14) moving into the page for each x as shown in

figure 1. But here the starting point was the discrete time step (12), with v(x(t)) an emergent
feature flowing from the formalism5.

5 Of course, this elementary example is only an illustration of the technique. A change of variables to
w(t) = ln(1 + 2x(t)) trivializes the problem to merely dw(t)/dt = (ln 2)w(t), so w(t) = 2tw(0), and w(1) = 2
w(0), hence leading to a monomial auxiliary, � = w/2, �−1 = 2w. Schröder generated several such examples
by conformal mappings of such monomial expressions. In fact, the change of variables from x to w is essentially
�(x) = 1

2 ln(1 + 2x) above, up to normalization. Schröder’s method is summarized by the following illustrative
commutative diagram.

x
f1−→ f1(x)

�(x) ↓ ↓ �(f1(x))

w
s−→ sw

That is, seek a coordinate transformation w = �(x) s.t. the time-one step is just w �→ sw. This is easy to iterate for
all t. The over-all composite map is then x �→ �(f1(x)) = s�(x).
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Figure 3. Potential for Schröder’s example.

Moreover, assuming that the motion is governed by a Lagrangian, with L = 1
2mv2−V (x),

and that we are dealing with this system at a fixed energy, the result for the velocity profile
immediately gives the x-dependence of the corresponding potential. Namely

V (x) = − 1
2mv2(x) + constant. (16)

In this sense the functional method of determining the evolution surface is a technique to
solve an inverse problem [7, 8]: given the f1(x) ‘scattering data’ for a finite time step (as
opposed to the usual infinite time step in an idealized scattering process), we may determine
an underlying V (x) upon making certain analyticity assumptions about the solution. For
the Schröder example, the essential features are contained in a plot of the effective potential
−v2(x) = −((1 + 2x) ln(1 + 2x) ln

√
2)2.

Note this V is unbounded below, and more importantly, the aforementioned fixed points
at x = −1/2 and x = 0 are simply unstable stationary points of the potential. We submit
that this is a common feature of the functional method, when the results are expressed as a
potential function.

In general, a formal solution of Schröder’s equation is predicated on the existence of
infinite iteration limits of f1(x), as discovered by Koenigs [5]. (The technique itself is perhaps
more familiar in the context of the Poincaré equation when written as a nonlinear finite
difference equation.) When the splinter is ‘approximately geometric’ (for example, again see
[4]) we have

�(x) ∝ lim
N→∞

fN(x)

sN
. (17)

In the above example due to Schröder (14), we actually require the limit as t goes to negative
infinity,

�(x) = 1

2
ln(1 + 2x) = lim

N→∞
f−N(x)

2−N
, (18)

as it is the splinter of f−1 that is approximately geometric.
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4. All iterates of x exp(x)

We now consider the iterates of

f1(x) = x exp(x), (19)

or equivalently, of its inverse, the Lambert function [6],

f−1(x) = LambertW(x) =
∞∑

n=1

(−n)n−1

n!
xn. (20)

The latter series is convergent for |x| < 1/e. Both f1(x) and f−1(x) have a unique real fixed
point for x = 0, so Schröder’s conjugacy equation can be solved for the auxiliary � with the
same fixed point, in power series expansion around that point. Since f ′

1(0) = 1, as explained
above, we will modify (19) and (20) to

f1(x) = sx exp(x), f−1(x) = LambertW(x/s), (21)

thereby introducing a second fixed point in f 1 at x = − ln s, but allowing for a possible limit
s → 1 at the end of various calculations, if sensible.

The resulting Schröder’s equation looks deceptively simple,

s�(x) = �(sxex). (22)

Here it is implicit that � really depends on two variables, both s and x, so (22) is actually
s�(x, s) = �(sxex, s). In the following, this additional dependence on s will be understood
but usually not displayed. It follows from (22) that s� ′(x) = sex(1 + x)� ′(sxex), along with
all higher derivatives with respect to x given by Faà di Bruno’s general formula; hence an
explicit series solution for � about x = 0 is straightforward to construct, in principle.

The corresponding Poincaré equation for the inverse function, � ≡ �−1, while nonlinear,
is also relatively simple in appearance6.

1
s
�(sx) = �(x) exp(�(x)). (23)

Again, it is implicit that � depends on both s and x.
With the normalization choice � ′(0) = 1, the auxiliary function and its inverse are given

explicitly to O(x5) by

�(x) = x − 1

(s − 1)
x2 +

1

2

3s + 1

(s − 1)(s2 − 1)
x3 − 1

6

16s3 + 8s2 + 11s + 1

(s − 1)(s2 − 1)(s3 − 1)
x4

+
1

24

125s6 + 75s5 + 145s4 + 146s3 + 53s2 + 31s + 1

(s − 1)(s2 − 1)(s3 − 1)(s4 − 1)
x5 + O(x6), (24)

�−1(x) = x +
1

(s − 1)
x2 +

1

2

3 + s

(s − 1)(s2 − 1)
x3 +

1

6

16 + 11s + 8s2 + s3

(s − 1)(s2 − 1)(s3 − 1)
x4

+
1

24

125 + 131s + 145s2 + 106s3 + 53s4 + 15s5 + s6

(s − 1)(s2 − 1)(s3 − 1)(s4 − 1)
x5 + O(x6). (25)

6 (23) amounts to a nonlinear first-order difference equation in the variables ln x and ln s, but another way to describe
it is as a nonlocal, nonlinear partial differential equation. That is to say,

sx ∂
∂x

−1�(x) = �(x) exp(�(x)).

‘Schröder’s wave equation’ if you will (again, pun intended). Various other PDEs follow from taking additional
derivatives of this equation, including partials with respect to s, but suffice it to say that it does not get any better than
(23). A similar statement applies to Poincaré’s equation (7) for any f 1, written as �(sx) = sx∂/∂x�(x) = f1(�(x)).

6
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Figure 4. � contour surface to O(x10) for −0.5 � x � 0.5 and 2.0 � s � 1.5.
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Figure 5. �−1 contour surface to O(x10) for −0.5 � x � 0.5 and 2.0 � s � 1.5.

For purposes of illustration, we plot O(x10) approximations for the auxiliary function and its
inverse versus x for various values of s, to obtain the surfaces in figures 4 and 5. We wish
to convey only qualitative behavior at this point, not detailed structure, and to point out that
for values of s > 1 the auxiliaries have many features similar to those for Schröder’s example
(13).

We stress that these are only approximate representations for the auxiliaries, based on the
explicit series to O(x10). We do not give the O(x10) series explicitly for all s, although they
are straightforward to obtain. For example, at the back and front edges of the plotted surfaces,
the series are given numerically by

�(x)|s=2 = x − 1.0x2 + 1.1667x3 − 1.4524x4 + 1.8734x5 − 2.4708x6 + 3.3085x7

− 4.4788x8 + 6.1133x9 − 8.398x10 + O(x11), (26)
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�−1(x)|s=2 = x + x2 + 0.833 33x3 + 0.619 05x4 + 0.424 21x5 + 0.2736x6 + 0.168 26x7

+ 9.9529 × 10−2x8 + 5.6989 × 10−2x9 + 3.1734 × 10−2x10 + O(x11), (27)

�(x)|s=3/2 = x − 2.0x2 + 4.4x3 − 10.049x4 + 23.402x5 − 55.143x6 + 130.95x7

− 312.72x8 + 749.86x9 − 1803.8x10 + O(x11), (28)

�−1(x)|s=3/2 = x + 2.0x2 + 3.6x3 + 6.0491x4 + 9.6673x5 + 14.861x6 + 22.142x7

+ 32.145x8 + 45.656x9 + 63.633x10 + O(x11). (29)

Also, we have avoided s = 1 in the plots of figures 4 and 5 since the explicit series results exhibit
an expected singular behavior as s → 1 for each of � and �−1, considered separately. This
behavior is foreshadowed by the growing coefficients in the numerical series for �(x)|s=3/2

and �−1(x)|s=3/2.
However, when � and �−1 are composed as in (10), the result for ft (x) is well behaved

even in the limit s → 1. Take s = eε, and expand in powers of ε, to find

ft (x)|s=eε = �−1(st�(x))|s=eε (30)

= (1 + tε + O(ε2))x

+

(
t +

1

2
(−1 + 3t)tε + O(ε2)

)
x2

+

(
1

2
(−1 + 2t)t +

1

2
(−1 + 2t)2tε + O(ε2)

)
x3

+

(
1

12
(5 − 15t + 12t2)t +

1

12
(−7 + 35t − 56t2 + 30t3)tε + O(ε2)

)
x4

+

(
1

24
(−2 + 3t)(5 − 12t + 8t2)t +

1

72
(50 − 315t + 673t2 − 621t3

+ 216t4)tε + O(ε2)
)
x5 + O(x6).

Despite what one might naively expect from the form of f 1 in (21), the dependence of ft on s
is certainly not multiplicative, a point already borne out by f−1 in (21). Of course, as t → 0
all ε dependence (i.e. all orders in ε) must disappear to yield the identity map f0(x) = x, and
indeed (30) reduces accordingly.

This last result permits us to compute, at least to O(x5), the initial velocity profile in the
limit s → 1, to find

v(x)|s=1 = lim
s→1, t→0

∂ft (x)

∂t
= x2 − 1

2
x3 +

5

12
x4 − 5

12
x5 + O(x6). (31)

A better numerical approximation keeps all terms to O(x10), to give

v(x)|s=1 = x2 − 0.5x3 + 0.416 67x4 − 0.416 67x5 + 0.445 83x6 − 0.480 56x7

+ 0.501 12x8 − 0.491 63x9 + 0.452 15x10 + O(x11), (32)

as plotted in figure 6.
Moreover, from time-translational invariance, we automatically obtain power series

approximations to v(x(t))|s=1 for all t just by substitution of x(t) in either of (31) or (32). We
may also visualize the effective potential for this problem from a plot of −v2(x), as discussed
previously in the context of Schröder’s example. As in that previous example, we see the fixed
point at x = 0 is a point of unstable equilibrium, as shown in figure 7.

8
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Figure 6. Initial velocity profile to O(x10) as s → 1.
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Figure 7. Effective potential to O(x10) as s → 1.

A similar calculation produces the initial velocity profile for other s �= 1. Again to O(x5),
we find

v(x, s) = lim
t→0

dft (x)

dt
= lim

t→0

d

dt
�−1(st�(x, s), s) (33)

= (ln s)

(
x +

1

s − 1
x2 − 1

s2 − 1
x3 +

1

2

3s + 2

(s2 − 1)(s2 + s + 1)
x4

− 1

3

8s2 + 4s + 3

(s4 − 1)(s2 + s + 1)
x5 + O(x6)

)
.

Here we have made explicit the dependence on both x and s. Of course in the limit
s → 1, v(x, s) remains finite and reduces to the previous (31). We plot in figure 8 the
initial velocity surface versus x and s. As before, from time-translational invariance this
function automatically also yields v(x(t), s) for all t just by substitution of x(t) in the power
series (33). In addition, the potential surface is effectively given by V (x, s) = − 1

2m(v(x, s))2.
For fixed s slices, this potential surface again shows, in figure 9 unstable equilibria at the fixed
points, x = 0 and x = − ln s, as was the case for Schröder’s elementary example.

9
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Figure 8. Initial velocity contour surface, to O(x5), for −1 � x � 1 and 1 � s � 2.
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Figure 9. Effective potential surface, to O(x5), for −1 � x � 1 and 1 � s � 2.

To visualize the evolution, in figure 10 we again plot x(t) versus t and initial x, as we did
for the closed form results of Schröder’s simple example. We find the same general features.

We only display the limit as s → 1. Other s give similar surface geometries. As
before, the front edge of the surface is the identity map, and the back edge is the discrete
propagation function f 1. Here f1(x) = x exp x. Continuations out of the page would give
the corresponding inverse functions, f−t , including f−1(x) = LambertW(x). We reiterate
that this evolution surface was not obtained by the standard method of integrating velocities
for individual initial x to produce the lines that go into the t depth of the mesh, but rather by
the use of functional methods to produce the continuous, inward flow of complete left to right
‘time slices’ of the surface (see footnote 4).

With these qualitative images in view, we turn to discuss in more detail the series solutions
for the auxiliaries and the composite functions ft (x) that follow from f1(x) = sx exp x.
Generally, the series for � and �−1 are of the form

�(x) =
∞∑

n=1

pn(s)x
n

(n − 1)!

(
n−1∏
k=1

1

1 − sk

)
, �−1(x) =

∞∑
n=1

qn(s)x
n

(n − 1)!

(
n−1∏
k=1

1

1 − sk

)
. (34)

10
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Figure 10. x(t) = lim
s→1

ft (x), to O(x10), plotted versus t and initial x.

The pn are polynomials in s, and can be obtained explicitly by recursion from p1 = p2 = 1
using7

pn = (n − 1)!
n−1∑
m=1

pmsm−1

(m − 1)!

mn−m

(n − m)!

⎛
⎝n−2∏

j=m

(1 − sj )

⎞
⎠ for n � 3 . (35)

Direct calculation gives leading and lowest powers of s in each of these polynomials.

pn = nn−2s(n−1)(n−2)/2 + (n − 2)nn−3sn(n−3)/2 +
1

2
(n − 3)(7n − 6)nn−4s

1
2 n(n−3)−1

+
1

6
(n − 1)(61n2 − 338n + 384)nn−5s

1
2 (n+1)(n−4)

+
1

24
(n − 1)(705n3 − 6265n2 + 17 018n − 15 000)nn−6s

1
2 (n+1)(n−4)−1 + · · ·

+

(
1

2
(n − 1)(n − 2)3n−3 − 1

)
s2 + ((n − 1) × 2n−2 − 1)s + 1. (36)

So written, a power is understood to be absent when any exponent in its coefficient is < 0.
There is also an exact ‘sum rule’ for each polynomial.

pn(s = 1) = ((n − 1)!)2. (37)

The auxiliary function’s leading asymptotic behavior is given for extreme values of s by

�(x)
˜s→0

∞∑
n=1

xn

(n − 1)!
= xex, (38)

�(x)s̃→∞
∞∑

n=1

(−1)n−1 nn−2s(1−n)xn

(n − 1)!
= sLambertW

(x

s

)
, (39)

7 We use the convention that the empty product is unity, e.g.
n−2∏

j=n−1
(1 − sj ) ≡ 1. This must be appreciated to

understand the sum rule given later in the text.
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Figure 11. First four integer iterates of xex (f 1, f2, f3 and f 4) plotted, above the identity map.

as well as the formal result,

�(x)
˜s→1

∞∑
n=1

xn

(1 − s)n−1
= x

1 + x
s−1

. (40)

Recall in the power series for � we chose to take the coefficient of x to be unity,
but that normalization is arbitrary. So too are the normalizations for the asymptotic
expressions.

Now consider some particular functional roots and powers. An obvious check on the
series for � and �−1 is to verify that �−1(s�(x)) = sxex , and indeed this is true to O(x5)

for the explicit results given in (24 ) and (25). Also, when f1(x) = sxex it is well known
that the inverse function is f−1(x) = LambertW

(
x
s

)
, as in (21). We may check that the

previous series for � and �−1 do indeed give the series for LambertW when we take t = −1
in ft (x) = �−1(st�(x)). For generic s, using the explicit series (24) and (25), we find

�−1

(
1

s
�(x)

)
= 1

s
x +

(
− 1

s2

)
x2 +

3

2s3
x3 +

(
− 8

3s4

)
x4 +

125

24s5
x5 + O(x6), (41)
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Figure 12. O(x10) series approximations for fractional iterates f 1 (at top), f1/2, f1/4, f1/8, f1/16
and f1/32, plotted above the identity map.

in perfect agreement with the textbook power series for LambertW
(

1
s
x
)
. As another example,

the functional square-root, such that f1/2
(
f1/2(x)

) = sxex , follows immediately for any s.
For instance,

f1/2(x) = �−1(2�(x)) = 2x +
2

3
x2 +

1

45
x3 +

1

135
x4 − 389

137 700
x5 + O(x6), (42)

where we have avoided any irrational coefficients by the choice s = 4. This is quickly checked
to satisfy f1/2(f1/2(x)) = 2xex , to the order given.

Integer iterates of f1(x)|s=1 = xex are easy to construct, without approximation, and plot.
We have f1(x) = xex , f2(x) = xexexex

, etc. In general, we find the form

fn+1(x) = a1 exp(a1(1 + a2(1 + a3(· · · (1 + an−1(1 + an)) · · ·)))), (43)

where a1 = xex , and for an�2 there is the recursion relation,

ak+1 = exp

⎛
⎝ k∏

j=1

aj

⎞
⎠ . (44)

Plotting these reveals an ordered sequence of upward convex functions for x � −1, fn+1(x) >

fn(x), and confirms that each has a minimum at x = −1, a fact easily established by
the chain rule of differentiation. The minima are also ordered, fn+1(−1) > fn(−1), with
f1(−1) = −1/e, and approach the x axis as n increases, limn→∞ fn(−1) = 0.

In figure 11 we plot four of these integer iterates. The curves are just time slices from
a continuation of the ft (x) surface in figure 10. All other positive iterates are also upward
convex and ordered on the domain x � −1, ft2(x) > ft1(x) for t2 > t1, have f ′

t (−1) = 0 with
minima at x = −1 for t > 0, and are easily visualized as intercalated between the curves given

13
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in figures 11 and 12. Mirror imaging any one of these curves through the straight line of the
identity map in the usual way gives the upper branch of the corresponding inverse function,
e.g. f−1 = LambertW, f−2, f−3 and f−4, and establishes the radius of convergence of the
Taylor series expansion for f−n(x) to be just Rn = |fn(−1)|.

We also plot in figure 12 some s → 1 series approximations to the fractional
iterates for −1 � x � 0. These again give an ordered sequence of curves between
f 1 and the identity map. Once more these curves are just time slices from the ft (x)

surface in figure 11. For a measure of the accuracy of the O(x10) series approximations
used to make this last plot, note that f ′

t (−1) does not always vanish in the plot, but
for the exact function, it should. In the plot, disparities are clearly discernible as
x → −1, where instead of vanishing we see that f ′

1/2(−1) > 0, f ′
1/8(−1) < 0 and

f ′
1/32(−1) > 0. Numerically from the series, ∂

∂x
f (x, 1)

∣∣
x=−1

= −2. 755 7 × 10−6,
∂
∂x

f (x, 1/2)
∣∣
x=−1

= 0.195 12, ∂
∂x

f (x, 1/4)
∣∣
x=−1

= −0.030 58, ∂
∂x

f (x, 1/8)
∣∣
x=−1

=
−0.291 32, ∂

∂x
f (x, 1/16)

∣∣
x=−1

= −0.030 586 and ∂
∂x

f (x, 1/32)
∣∣
x=−1

= 0.346 87. These
numerical disparities exist because x = −1 lies precisely at the radius of convergence for the
power series in question and is a branch point in the exact functions for generic t, so the series
become poor approximations as x → −1. Better numerical results for fractional iterates near
x = −1 can be obtained by incorporating branch points into approximate trial solutions of
the functional equation, and then matching these solutions onto the series for x > −1. This is
work in progress.

5. Conclusions

In conclusion, we suggest taking a broader perspective and considering other points of view
in dynamics that invoke Schröder’s functional equation, s ◦ χ = χ ◦ f , or its inverse, the
Poincaré equation, χ−1 ◦ s = f ◦ χ−1. As usual, s is just the simple multiplicative map, or
change of scale, s : x → sx, while f is a less trivial, but given function. For example,

(i) Single trajectory maps: Invert a trajectory function x(t) to obtain the time t (x), at least
for some interval in t, assuming x(0) = 0. Then consider Schröder’s functional equation
written as χ(x; v) = vχ(t (x); v). Is there a cogent relation between the parameter v and
the initial velocity? What is the physical meaning of the resulting function χ?

The answers are straightforward. Write the equation to place emphasis on the time
dependence: χ(x(t); v) = vχ(t; v). Then analyticity near t = 0 requires χ(0; v) = 0, and,
if χ ′(0; v) �= 0, then v = dx(t)

dt

∣∣
t=0. We also have x(t) = χ−1(vχ(t)), where additional v

dependence of χ , if any, is now implicit. So, dynamical evolution along a single trajectory is in
this sense a functional similarity transformation acting on the initial velocity: x = χ−1 ◦v ◦χ .
As a consequence of any non-commutativity between χ and the simple multiplicative map,
we will have χ−1 ◦ v ◦χ �= v, and the trajectory will evolve as a nonlinear function of t—with
linear t dependence being just free particle behavior: x(t) = vt . We may again think of χ

as an auxiliary function defined on the initial phase space which encodes all solutions of the
classical equations of motion.

(ii) Pseudo-scaling: Given a trajectory, again construct the inverse function x−1. Then what
is the significance of the new time variable T (t; s) = x−1(sx(t))?

This change of time variable simply rescales the solution. That is to say, X(T ) ≡ x(T (t)) =
sx(t). Note that T (t) differs from a linear function of t only if the trajectory function fails to
commute with the multiplicative map.

14
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(iii) Iterative time evolution: From a lattice of time points, is it always possible to use
Schröder’s functional equation to obtain continuous time evolution?

In this paper we have discussed how, under certain circumstances, the answer to this last
question is affirmative. It remains to see whether the method can be applied in all situations.
Nevertheless, we believe that this particular functional method will be applicable to problems
in classical chaos [9, 10], to complement existing methods for analyzing unstable fixed points.
We also think that there is no difficulty, in principle, to prevent the method from being applied
to classical dynamics in higher dimensions, or even to quantum systems, at least under certain
circumstances, upon extension to more variables [11]. We look forward to a time when uses
of functional evolution methods have become commonplace.
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Appendix. Summary for repulsive polynomial potentials

The method of the paper can be used directly to solve for trajectories in well-known polynomial
potentials, for motion towards or away from unstable fixed points, when turning points are not
encountered in finite time. Here we list the essential features for three examples.

Quadratic:

V (x) = −v2(x) = −x2 (A.1)

v(x) = x

2�(x) = �(2x)

�(x) = x, �−1(x) = x

x(t) = x et

t = τ ln
√

4 , x0 = 0

Quartic: (see footnote 4)

V (x) = −v2(x) = −1 + 2x2 − x4 (A.2)

v(x) = (1 − x)(1 + x)

1

3
�(x) = �

(
2x + 1

x + 2

)

�(x) = 2

(
x − 1

x + 1

)
, �−1(x) = 2 + x

2 − x

x(t) = x − 1 + (x + 1) e2t

1 − x + (x + 1) e2t

t = τ ln
√

3 , x0 = +1

Sextic:

V (x) = −v2(x) = −x2 + 2x4 − x6 (A.3)

v(x) = x(1 − x)(1 + x)

15



J. Phys. A: Math. Theor. 42 (2009) 485208 T Curtright and C Zachos

√
2�(x) = �

( √
2x√

1 + x2

)

�(x) = x√
1 − x2

, �−1(x) = x√
1 + x2

x(t) = x et

√
1 − x2 + x2 e2t

t = τ ln
√

2 , x0 = 0

To produce these examples, we considered right-moving, zero-energy configurations. For
convenience we rescaled t, and then we constructed the exact series solution to Schröder’s
equation in the neighborhood of selected fixed points, x0. From the auxiliaries, �, we
then recovered the continuous time iterates. That is to say, x(t) = fτ (x − x0) =
�−1 (sτ� (x − x0)), with τ ∝ t and x0 as given above.
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